$xy=\log y +c$,则
\begin{equation} \label{eq:25.15.13} \frac{dy}{dx}=\frac{y^2}{1-xy} \end{equation} 证明:令$F(x,y)=xy-\log y-c$.当$F(x_0,y_0)=0$时,可得$x_0=\frac{\log y_{0}+c}{y_{0}}$.易得 \begin{equation} \label{eq:25.15.14} \frac{\partial F}{\partial y}(x,y)=x-\frac{1}{y} \end{equation} 因此 \begin{equation} \label{eq:25.15.23} \frac{\partial F}{\partial y}(x_0,y_0)=x_0-\frac{1}{y_0} \end{equation} 当$\frac{\partial F}{\partial y}(x_0,y_0)\neq 0$时,$x_0y_0\neq 1$.此时,根据隐函数定理,在$(x_0,y_0)$的足够小的邻域$D$内,$\forall (x,y)\in D$,都有 \begin{equation} \label{eq:25.16.04} \frac{dy}{dx}=\frac{y^2}{1-xy} \end{equation}当$\frac{\partial F}{\partial y}(x_0,y_0)=0$时,可得$y_0=e^{1-c},x_0=\frac{1}{e^{1-c}}$.函数在这个点处不可导(为什么?提示:考虑$x$对$y$的导数,为0.再根据反函数定理).(当$c=1$时情形如图